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Abstract

Rb[Mo(103)6] (1), Rb[Zr(103)6] (2), and Cs[Zr(103)s] (3) have been prepared under hydrothermal conditions. These compounds are
isostructural and consist of alkali metal cations and isolated [¥)gl® anions containing transition metals in +4 oxidation state. The
[M(103)]?>~ anions possesd symmetry with the transition metal centers residing3aites. The iodate anions ligate the transition metals
through a single oxygen atom. All of the iodate oxygen atoms form long interactions with the alkali metal cations. These interactions result
ina contractlon of the eM—O bond angles along a single three-fold axis. Crystallographic data (193 Kigonal, space grouR3, a =
11. 4048(8)A c=11. 4062(8)A Z=3,MoKa, 2 =0. 71073 R(F) = 2.52% for 43 parameters with 711 reflections with2(1); 2, trigonal,
space grouﬁB a=11. 5575(9)A c=11. 4987(9)A Z=3, Mo Ka, A= 0.71073R(F) = 2.16% for 43 parameters with 742 reflections with
> 20(1); 3, trigonal, space grouﬁ3 a=11. 768(1)A c=11. 720(1)‘\ Z =3, Mo Ka, 2 =0.71073R(F) = 1.61% for 43 parameters with 781
reflections withl > 2o (1).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction IR spectroscopic studies allowing for complete assignment
of iodate stretching and bending mod@sl1-13]

Transition metal iodates have been the subject of substan- The crystal chemistry of transition metal iodates is dom-
tial interest for almost three decades. Initial studies empha-inated by the formation of extended structures owing to the
sized the crystal growth of compounds with polar structures commonly bridging nature of the iodate anion. While some
in an effort to deduce structure-property relationships, e.g. systems are truly low-dimensional (e.g. NaCu{}$)[14]),
piezo- and pyroelectric coefficienft—3], second-harmonic  many adopt three-dimensional network structures. Molec-
generation2,4-6], and magnetisni,7]. While many hy- ular systems are surprisingly rare, being known only from
drated transition metal iodates are centrosymmg&tianost the chromyl iodate anion [CrdlO3)]*~ [15] and from
anhydrous transition metal iodates are noncentrosymmetric;[MoO2(103)4]2~ [16]. Herein we report the preparation and
examples of which include Co(K) [4], B-Ni(103)2 [9], crystal structures of three zero-dimensional, or molecular,
a-Cu(l03)2 [2,10], and Zn(IQ)2 [9]. The magnetic prop-  transition metal iodates, RfMo(103)g] (1), Rp[Zr(103)s]
erties of some transition metal iodates have proven to be(2), and Cg[Zr(103)g] (3).
quite rich, with antiferromagnetic ordering being observed
for Fe(103)3 belowTy =17 K, and weak ferromagnetism be-
ing found for Ni(103)2-2H20 beneath 3 H4]. More recently 2. Experimental
Zn(I03)2-2H20, Ni(|O3)2-2H20, and M(|Q)2~4H20 (|V| =
Ni, Co) have been the subject of single crystal Raman and, 1 Syntheses
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Table 1

Crystallographic data for REMo(103)s] (1), Rbp[Zr(103)6] (2), C2[Zr(103)6] (3)

Formula RB[Mo(I03)e] (1) Rbz[Zr(103)e] (2) C2[Zr(103)6] (3)
Formula mass (amu) 1316.28 1311.56 1406.44
Color and habit Orange rhombohedron Colorless rhombohedron Colorless rhombohedron
Crystal system Trigonal Trigonal _Trigonal
Space group R3 (No. 148) R3 (No. 148) R3 (No. 148)
a(A) 11.4048(8) 11.5575(9) 11.768(1)
c(A) 11.4062(8) 11.4987(9) 11.720(1)

V (A3) 1284.8(2) 1330.17(18) 1405.7(3)

z 3 3 3

T(°C) -80 —80 —80

2 (A) 0.71073 0.71073 0.71073

pealed (g cn3) 5.104 4.912 4.984

u(Mo Ka) (cm™1) 173.17 166.07 143.83

R(F) for F2 > 25(F2)2 0.0252 0.0216 0.0161

Ry (F2)P 0.0577 0.0443 0.0407

& R(F) = X" ||Fol — |Fell/ 3 | Fol- 1
> Ru(F2) = [Tlw(FZ - ;) L wrd]

(99.94%, Fisher), ZrOGI (99.9%, Alfa-Aesar), RECO3 2.3. RbZr(103)6 (2)
(99%, Alfa-Aesar), and G£0Os (99%, Alfa-Aesar) were
used as received. Rbi@nd CslQ were prepared from the RblO; (229mg, 0.829mmol), 205 (138mg,
reaction of RbCO3 or C9CO3 with HslOg. Distilled and 0.414mmol), and ZrOGI (133mg, 0.425mmol) were
millipore filtered water with a resistance of 18.ZMm was loaded in a 23mL PTFE-lined autoclave. Water (1.5mL)
used in all reactions. Reactions were run in Parr 4749 23 mL was then added to the solids. The product consisted of col-
autoclaves with PTFE liners for 3d at 200 and cooled orless rhombohedral crystals of #¥(103)s (2) dispersed
at a rate of 9C/h to 23°C. SEM/EDX analyses were per- in ZrO, powder. The mother liquor was decanted from the
formed using a JEOL 840/Link Isis instrument. K, Rb, Cs, crystals, which were then washed with water and methanol,
Mo, Zr, and | percentages were calibrated against stand-and allowed to dry. Yield 2, 56 mg (10% yield based on Zr).
ards. EDX analysis for RbZr(103)s provided a Rb:Zr:l ratio of
2:1:6.
2:2. RbMo(10s)s (1) 2.4. C3Zr(103)s (3)
MoOs (86mg, 0.597mmol), KOs (274 mg,
1.202mmol), and RICOz (139 mg, 0.602mmol) were CslQ,  (250mg,  0.772mmol), 20s (127 mg,
loaded in a 23mL PTFE-lined autoclave. Water (1.0mL) 0-380mmol), and ZrOGl (123mg, 0.382mmol) were
was then added to the solids. The product consisted ofl0@ded in a 23-mL PTFE-lined autoclave. Water (1.5mL)
orange rhombohedral crystals of ffio(I03)s (1) in trace was then added to the solids. The product coq&sted of.color—
amounts, with the major product being pale yellow rods €SS rhombohedral crystals of £25(103)s (3) dispersed in
of RbMoOs(103) [17]. The mother liquor was decanted ZrOy p_owder. Yield 3, 54 mg (10% vyield base_d on Zr). EDX
from the crystals, which were then washed with water and analysis for C&Zr(I03)e provided a Cs:Zr:I ratio of 2:1:6.
methanol, and allowed to dry.
2.5. Crystallographic studies

Single crystals of REMo(103)g] (1), Rbp[Zr(103)6] (2),

Table 2 : ;

Atomic coordinates and equivalent isotropic displacement parameters for and Cs[Zr(IO;)G] (3) were mounted on a glass fibers with
Rby[Mo(I03)g] (1) epoxy and aligned on a Brgker SMART APEX CCD X-
Ao » y . G Re ray diffractometer Wlth a digital camera. An_ Oxford Cryo-

4 stat was used to adjust the data collection temperature
|\R/|2((11)) 3/3 (1)/3 g)2331(1) 003)1126((11)) to —80°C. Intensity measurements were performed using
1) 0.4075(1) 0.0208(1) 0.7245(1) 0.014(1) gr_aphlte monochromateq Makradiation from a sealed tube
o(1) 0.5779(4) 0.1775(4) 0.7266(3) 0.018(1)  With a monocapillary collimator. SMART was used to deter-
0(2) 0.4591(4) —0.0644(4) 0.6223(3) 0.021(1) mine the preliminary cell constants from 90 frames collected
0(3) 0.4295(4)  —0.0441(4) 0.8616(3) 0.019(1) with an exposure time of 10 s, and to subsequently control

3 Ugq s defined as one-third of the trace of the orthogonallzgdensor. the data collection. Fd=3, the intensities of reflections of a
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Table 3 QO™
Atomic coordinates and equivalent isotropic displacement parameters for I(l)um
RBe[Zr(103)s] (2) 0@)"" -

o )

Atom X y z u;q (Az)a 0(2) (1) 0(2)""
Rb(1) 0 0 0.83508(7) 0.0142(2)
Zr(1) 2/3 1/3 5/6 0.0081(2) @
I(1) 0.39520(3) 0.38101(3) 0.72004(2) 0.0089(1) 0@3)
O(1) 0.5528(3) 0.3772(3) 0.7223(3) 0.0121(7)
0(2) 0.4501(3) 0.5180(3) 0.6205(3) 0.0137(7)
O(3) 0.4252(3) 0.4668(3) 0.8574(3) 0.0151(7)

& Uggqis defined as one-third of the trace of the orthogonallzgdensor.

sphere were collected by a combination of three sets of expo-
sures (frames). Each set had a diffeggangle for the crystal
and each exposure covered a range of th3v. A total of
1800 frames were collected with an exposure time per frame
of 30s.

Determination of integrated intensities and global cell re- tion where RbIQ was substituted for CslDwas also used
finement were performed with the Bruker _SAINT (v 6.02) to produce the Rb2) analog of3. Crystals of the K salt
software package using a narrow-frame integration algo- of [Zr(103)e]?~ can also be grown under mild hydrothermal

rithm. An analytical absorption correction was applied, fol- conditions. However, these crystals are too small for single
lowed by a semi-empirical absorption correction using SAD- crystal X-ray diffraction measurements.

ABS [18]. The program suite SHELXTL (v 5.1) was used

for space group determination (XPREP), structure solution 3.2, Structures of RfMo(103)s] (1), Rbp[Zr(103)g]

(XS), and refinement (XL]19]. The final refinement in-  (2), and Cs[Zr(103)e] (3)

cluded anisotropic displacement parameters for all atoms and

a secondary extinction parameter. Some crystallographic de-  Compoundsl-3 are isostructural and all crystallize in
tails are listed inTable 1for 1-3. Atomic coordinates and the trigona| space gl’OL‘B& The Compounds consist of iso-
equivalent isotropic displacement parameters are given injated alkali metal cations and [M(Ks]%~ (M = Mo, Zr) an-
Tables 2—4or 1, 2, and3, respectively. ions. The geometry around the transition metal centers in the
[M(103)6]?~ anions are best described as a slightly distorted
octahedron, and each metal resides @ws#e, resulting in a
single unique M-O bond length for each compound. A view
of the [Zr(103)s]2~ anion from3, which is also representative
of 1 and2, is shown inFig. 1 The Mo-O and Zr~O bond
lengths are 1.967(4), 2.070(3), and 2.069%(21$or 1, 2, and

Fig. 1. A depiction of the [Zr(IQ)s]2~ anion in Cs[Zr(103)¢] (3) (50%
probability ellipsoids are shown).

3. Results and discussion

3.1. Syntheses

Rb[Mo(103)e] (1) is only isolated in trace quantities
from syntheses that were originally employed to prepare
RbMoO3(103) [17]. While C3[Zr(103)g] (3) can be pre-
pared from the reaction of CskQwith ZrO, at 425°C in
supercritical water, this reaction yields only trace amounts of
C9[Zr(103)6] (3) in the form of minute crystals (<0.01 mm
on an edge). Instead, it was observed thabuld be pre-
pared in low yield, from the reaction of Csj@vith I,05 and
ZrOCl, under mild hydrothermal conditions. A similar reac-

Table 4
Atomic coordinates and equivalent isotropic displacement parameters for
C[Zr(103)6] (3)

Atom X y z g (A2)2
Cs(1) 0 0 0.8386(1) 0.013(1)
7r(1) 23 13 5/6 0.008(1)
I(2) 0.3973(1) 0.0191(1) 0.7220(1) 0.009(1)
o(1) 0.4559(2)  —0.0596(2) 0.6279(2) 0.016(1)
o) 0.5486(2) 0.1811(2) 0.7244(2) 0.014(1)
oQ) 0.4235(2)  —0.0344(2) 0.8584(2) 0.017(1)

& Uegqis defined as one-third of the trace of the orthogonallzgdensor.

3, respectively. Selected bond distances are givdiaiie 5
Using the Z+O bond lengths, the bond-valence sums for Zr
in 2 and3 were calculated to be 4.19 and 4.20, respectively,
which are consistent with Zr(I\V[20,21]

In each compound there is likely a symmetric elongation
of the M—O bonds along a single three-fold axis that is ob-
served in the ©M—-0 bond angles being distorted from or-
thogonality by 4.30(16) 4.05(13), and 4.10(9) in 1, 2,

Table 5
Selected bond distance&)(for Rbz[Mo(103)6] (1), Rbp[Zr(103)6] (2), and
C[Zr(103)6] (3)

Rb2[Mo(103)e] (1)

Mo(1)-O(1) (x 6) 1.967(4) I(1)-0(2) 1.795(4)
1(1)-O(1) 1.870(4) I(1)-0(3) 1.800(4)
RIp[Zr(103)6] (2)
Zr(1)-O(1) (x 6) 2.070(3) 1(1)-0(2) 1.793(3)
I(1)-O(1) 1.844(3) 1(1)-0(3) 1.804(3)
Cs[Zr(103)6] (3)
Zr(1)-O(1) (x 6) 2.069(2) 1(1)-0(2) 1.785(2)
I(1)-O(1) 1.847(2) I(1)-O(3) 1.800(2)
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Fig. 2. Aview of the packing in G$Zr(103)s] (3).

and3, respectively. As a® ion Mo(IV) might be expected
to exhibit Jahn-Teller distortions that could potentially re-
sult in this distortion. However, Zr(IV), beind®, would not

be expected to show the same type of distortion, although a

second-order Jahn-Teller distortion is possii@2—30] An
examination of the packing of the alkali metal cations and
the [M(I03)g]?~ anions reveals that there are short interac-

tions between the iodate oxygen atoms that bind the transi-
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5. Auxiliary material

Further details of the crystal structure investigation may
be obtained from the Fachinformationzentrum Karlsruhe, D-
76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247
808 666; e-mailcrysdata@fiz-karlsruhe.flen quoting de-
pository numbers CSD 413880, 414091, and 413881.
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